Geodesic equations and their numerical solutions in geodetic and Cartesian coordinates on an oblate spheroid
نویسندگان
چکیده
The direct geodesic problem on an oblate spheroid is described as an initial value problem and is solved numerically in geodetic and Cartesian coordinates. The geodesic equations are formulated by means of the theory of differential geometry. The initial value problem under consideration is reduced to a system of first-order ordinary differential equations, which is solved using a numerical method. The solution provides the coordinates and the azimuths at any point along the geodesic. The Clairaut constant is not assumed known but it is computed, allowing to check the precision of the method. An extended data set of geodesics is used, in order to evaluate the performance of the method in each coordinate system. The results for the direct geodesic problem are validated by comparison to Karney’s method. We conclude that a complete, stable, precise, accurate and fast solution of the problem in Cartesian coordinates is accomplished.
منابع مشابه
Transforming Geocentric Cartesian Coordinates to Geodetic Coordinates by a New Initial Value Calculation Paradigm
Transforming geocentric Cartesian coordinates (X, Y, Z) to geodetic curvilinear coordinates (φ, λ, h) on a biaxial ellipsoid is one of the problems used in satellite positioning, coordinates conversion between reference systems, astronomy and geodetic calculations. For this purpose, various methods including Closed-form, Vector method and Fixed-point method have been developed. In this paper, a...
متن کاملSolutions to the ellipsoidal Clairaut constant and the inverse geodetic problem by numerical integration
Wederive computational formulas for determining the Clairaut constant, i.e. the cosine of themaximum latitude of the geodesic arc, from two given points on the oblate ellipsoid of revolution. In all cases the Clairaut constant is unique. The inverse geodetic problem on the ellipsoid is to determine the geodesic arc between and the azimuths of the arc at the given points. We present the solution...
متن کاملExplicitly computing geodetic coordinates from Cartesian coordinates
This paper presents a new form of quartic equation based on Lagrange’s extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari’s line is found, which avoids the need of a good starting guess for iterative methods. A new expli...
متن کاملRay-tracing and Interferometry in Schwarzschild Geometry
Here, we investigate the possible optical anisotropy of vacuum due to gravitational field. In doing this, we provide sufficient evidence from direct coordinate integration of the null-geodesic equations obtained from the Lagrangian method, as well as ray-tracing equations obtained from the Plebanski’s equivalent medium theory. All calculations are done for the Schwarzschild geometry, which resu...
متن کاملVerification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme
In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.01357 شماره
صفحات -
تاریخ انتشار 2016